
Elementary parallelism: a formal decomposition, linear elements following eachother like parallels and distorting the object. The object is completely stretched out, as if elastic. The lines follow eachother in parallels, while changing subtly to form movement, or the form of the object in question.
EdgeList = list[np.ndarray] # list of 2xdim arrays def get_cuts(N: Net) -> EdgeList: return np.concatenate([N.tope.meta[2][i]["cuts"] for i in range(len(N. ↪facets))]) def get_edges(N: Net) -> EdgeList: # apply to unfolded Net edges = [] for i, vertices in N.facets.items(): facet_template = N.tope.get_face(i) # has correct indices edges.extend((vertices[list(e)] for e in facet_template.faces[1])) return edges import itertools Net2d = None # new format of Net def iter_edges(N: Net2d) -> Iterable[np.ndarray[2,2]]: # apply to unfolded 2d␣ ↪Net return N.iter_faces_as_vertices(dim=1) FacetLabels = list[tuple[str, np.ndarray]] # label, position def get_facet_labels(N: Net) -> FacetLabels: labels = [] for i, vertices in N.facets.items(): labels.append((N.tope.meta[N.tope.dim-1][i]["index"], vertices. ↪mean(axis=0))) return labels def iter_facet_labels(N: Net2d, key: str) -> Iterable[str]: return zip(N.iter_meta(dim=2, key="index"), map(N.cells.values(), lambda x:␣ ↪x.vertices.mean(axis=0)))
P = Tope.from_vertices(v_36cell) P.save_index() P.cut_2faces_with_hyperplanes(hyperplanes) #save_nets(P, "figs/4902603", force=True, fmt="svg")
Begin discussing materiality of strings
Think of a worm made of strings
A space time worm that leaves a space trace
Each string is a loop that is a time point
Fused loops
Loops are like rubber bands not chains
Imagine colour gradation of loops into past and future away from current time point loop